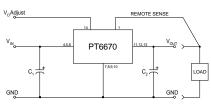
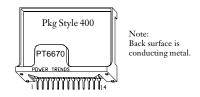

SLTS039A


(Revised 6/30/2000)

- Input Voltage Range: 3.1 to 3.6V 4.5 to 5.5V
- Adjustable Output Voltage
- 85% Efficiency
- Remote Sense Capability
- Soft Start

The PT6670 is a series of high-output Integrated Switching Regulators (ISRs) designed to provide a voltage boost function. Housed in a 14-Pin SIP (Single In-line Package), the PT6670 series incorporates regulators for either a +3.3V or +5.0V input and provide output voltages from +5V to +12V. Applications include power for auxilliary circuits requiring up to 20W.


Standard Application

 C_1 = Required 560 μ F electrolytic (1) C_2 = Required 560 μ F electrolytic (1)

Pin-Out Information

Pin_	Function	Pin	Function
1	Remote Sense		GND
2	Do not connect	9	GND
3	Do not connect	10	GND
4	Vin	11	V_{out}
5	V_{in}	12	V_{out}
6	V_{in}	13	V_{out}
7	GND	14	V _{out} Adjust

Ordering Information

+3.3V Input	+5V Input	<u>Vout</u>
PT6671□	_	+5.0 Volts
PT6672□	PT6675□	+9.0 Volts
PT6673□	PT6674□	+12.0 Volts

PT Series Suffix (PT1234X)

Case/Pin	Heat
Configuration Vertical Through-Hole	Spreader P
Horizontal Through-Hole	D
Horizontal Surface Mount	E

Preliminary Specifications

Characteristics				PT6670 SERIES			
(T _a = 25°C unless noted)	Symbols	Conditions		Min	Тур	Max	Units
Output Current	I_o	T_a = 60°C, 200 LFM, pkg P T_a = 25°C, natural convection	PT6671 PT6672 PT6673 PT6674 PT6675	0.1 0.1 0.1 0.1 0.1 0.1		TBD 4.0 1.67 1.25 2.0 3.0	A
Input Voltage Range	V_{in}	Over V_o and I_o range	PT6671/2/3 PT6674/5	3.1 4.5	3.3 5.0	3.6 5.5	V
Inrush Current	I_{ir}	On start-up		_		TBD	A
Output Voltage Tolerance	$\Delta { m V_o}$	$V_{\rm in}$ = $V_{\rm in(TYP)}$, $I_{\rm o}$ = $I_{\rm omax}$ $T_{\rm a}$ = 0°C to 65°C		_	1.5	_	$%V_{o}$
Output Voltage Adjust Range	V_{oadj}	Pin 14 to V_o or ground	PT6671 PT6672/5 PT6673/4	3.8 8.2 9.6	=	5.5 9.2 12.8	V
Line Regulation	Reg _{line}	Over V_{in} range, $I_o = I_{omax}$		_	±0.25	±0.5	$%V_{o}$
Load Regulation	Regload	$V_{in} = V_{in(TYP)}, 0.1 \le I_o \le I_{omax}$		_	±0.25	±0.5	$%V_{o}$
V _o Ripple/Noise	V_n	$V_{in} = V_{in(TYP)}, I_o = I_{omax}$		_	3	_	$%V_{o}$
Transient Response with C ₁ = C ₂ = 560μF	${ m t_{tr} \over V_{os}}$	I _o step between ½I _{omax} and I _{omax} V _o over/undershoot		_	500 5	_	μSec %V _o
Efficiency	η	V_{in} = $V_{in(\Upsilon\Upsilon P)}$, I_o = ½ I_{omax}	PT6671 PT6672 PT6673 PT6675 PT6674		85 84 83 88 87		%
		$V_{in} = V_{in}(TYP), I_o = I_{omax}$	PT6671 PT6672 PT6673 PT6675 PT6674		82 80 82 87 86		%

(Continued)

5V/3.3V Input 20W Boost Integrated Switching Regulator

Preliminary Specifications (continued)

Characteristics			PT6670 SERIES			
(T _a = 25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units
Switching Frequency	f_{0}	$\begin{array}{l} Over \ V_{in} \ range \\ 0.1A \leq I_o \leq I_{omax} \end{array}$	_	300	_	kHz
Absolute Maximum Operating Temperature Range	T_a		-40		+85	°C
Recommended Operating Temperature Range	T_a	Free Air Convection (40-60 LFM) Over $V_{\rm in}$ and $I_{\rm o}$ ranges with heat tab	-40		+65	°C
Storage Temperature	T_s	_	-40	_	+125	°C
Mechanical Shock	_	Per Mil-STD-883D, Method 2002.3	_	500	_	G's
Mechanical Vibration	_	Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, soldered in a PC board	_	7.5	_	G's
Weight	_	_	_	14	_	grams

Notes: (1) The PT6670 Series requires two 560µF electrolytic capacitors (input and output) for proper operation in all applications.

(2) This product does not include short circuit protection. TYPICAL CHARACTERISTICS PT6671/2/3 (@ V_{in}=+3.3V) (See Note A) PT6674/5 Series (@ V_{in}=+5.0V) (See Note A) **Efficiency vs Output Current Efficiency vs Output Current** PT6671 - PT6675 -- PT6672 PT6674 PT6673 60 60 55 50 lout (A) **Ripple vs Output Current Ripple vs Output Current** 160 140 Ripple - mV ⋛ 150 PT6673 100 PT6674 -PT6672 Ripple -PT6675 80 PT6671 100 20 1.5 lout (A) lout (A) **Power Dissipation vs Output Current Power Dissipation vs Output Current** 4.5 3.5 PT6673 -PT6674 _PT6675 ė 2 ____PT6671 2 0.5 0 0.5 2 2.5 3.5 1.5

Note A: All characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the ISR.

lout (A)

Adjusting the Output Voltage of the PT6670 Series Boost Voltage ISR

The Power Trends PT6670 ISRs are a series of converters that operate from a 3.3V or 5V input bus voltage. In each case, the output voltage can be adjusted higher or lower than the factory trimmed pre-set voltage. Adjustment requires the addition of a single external resistor. Table 1 gives the permissible adjustment range for each model in the series as $V_a(\min)$ and $V_a(\max)$ respectively.

Adjust Up: To increase the output, add a resistor R2 between pin 14 (V_o Adjust) and pins 7-10 (GND).

Adjust Down: Add a resistor (R1), between pin 14 (V Adjust) and pin 1 (Remote Sense).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor.

Notes:

- 1. Use only a single 1% resistor in either the (R1) or R2 location. Place the resistor as close to the ISR as possible.
- Do not exceed the maximum advised adjustment voltage.
 Doing so could over stress the part.
- 3. Never connect capacitors to the $V_{\rm o}$ Adjust control pin. Any capacitance added to this pin will affect the stability of the ISR.
- 4. In the case of the PT6671, when the output is adjusted lower than the pre-trimmed output, the maximum input voltage to the ISR should not exceed $(V_0 0.5)V$.

The adjust up and adjust down resistor values can also be calculated using the following formulas. Be sure to select the correct formula parameters from Table 1 for the model being adjusted.

$$(R1) \hspace{1.5cm} = \hspace{.5cm} \frac{K_{o} \, (V_{a} - 2.5)}{2.5 \, (V_{o} - V_{a})} \hspace{.5cm} - \hspace{.5cm} R_{s} \hspace{.5cm} k \Omega \label{eq:reconstruction}$$

$$R2 \hspace{1cm} = \hspace{1cm} \frac{K_o}{V_a - V_o} \hspace{1cm} - \hspace{1cm} R_s \hspace{1cm} k\Omega$$

Where: V_o = Original output voltage

V_a = Adjusted output voltage

K_o = The multiplier constant in Table 1

 R_s = The series resistance from Table 1

Figure 1

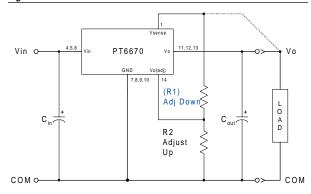


Table 1

idalo i						
PT6670 ADJU	PT6670 ADJUSTMENT RANGE AND FORMULA PARAMETERS					
Series Pt #						
3.3V Bus	PT6671	PT6672	PT6673			
5.0V Bus		PT6675	PT6674			
V ₀ (nom)	5.0V	9.0V	12.0V			
Va(min)	3.8V	8.2V	9.6V			
Va(max)	5.5V	9.2V	12.8V			
K_0 (V·k Ω)	25.0	48.75	47.41			
R _S (kΩ)	4.99	80.6	54.9			

Table 2

PT6670 AD	JUSTMENT RESIS	STOR VALUES		
Series Pt #				
3.3V Bus	PT6671		PT6672	PT6673
5.0V Bus			PT6675	PT6674
V _O (nom)	5.0V		9.0V	12.0V
Va(req'd)		Va(req'd)		
3.8	(5.8) k Ω	8.2	(58.3)kΩ	
3.9	(7.7) k Ω	8.4	(111.0) k Ω	
4.0	$(10.0k\Omega$	8.6	(217.0) k Ω	
4.1	(12.8) k Ω	8.8	(534.0) k Ω	
4.2	(16.3) k Ω	9.0		
4.3	(20.7) k Ω	9.2	$163.0 \mathrm{k}\Omega$	
4.4	(26.7) k Ω	9.4		
4.5	(35.0) k Ω	9.6		(1.2) k Ω
4.6	(47.5) k Ω	9.8		(8.0) k Ω
4.7	(68.3) k Ω	10.0		(16.2) k Ω
4.8	(110.0) k Ω	10.2		(26.2) k Ω
4.9	(235.0) k Ω	10.4		(38.7) k Ω
5.0		10.6		(54.8) k Ω
5.1	245.0kΩ	10.8		(76.3) k Ω
5.2	120.0kΩ	11.0		(106.0) k Ω
5.3	78.3kΩ	11.2		(151.0) k Ω
5.4	57.5kΩ	11.4		(226.0) k Ω
5.5	45.0kΩ	11.6		(376.0) k Ω
		11.8		(827.0) k Ω
		12.0		
		12.2		182.0kΩ
		12.4		63.3kΩ
		12.6		24.1kΩ
		12.8		4.4kΩ

R1 = (Blue) R2 = Black

